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Abstract We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media.
We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our
simulated drying behavior compares favorably with experiments, considering the large sensitivity of the
emergent behavior to the uncertainty associated with even small manufacturing errors. We show that
increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, pro-
longing liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our find-
ings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays
a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets
of energy, water and solutes in soils.

Plain Language Summary Drying of porous media such as soils, cement, food or fuel cells is an
important process in many natural and industrial systems. Drying in soils is of particular environmental
importance, as it controls the transfer of water, energy and solutes between the subsurface and the atmo-
sphere. We study the effect of spatial correlation in particle sizes on drying rate and extent, by combining
pore-scale modeling with state-of-the-art microfluidic experiments of the same pore geometry. Our simula-
tions compare favorably with experiments, considering the large sensitivity of the emergent behavior to the
uncertainty associated with manufacturing errors. We show that increasing the correlation length in particle
sizes–the distance in which the probability to encounter particles of similar sizes is high–promotes preferen-
tial invasion of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher
drying rates for longer periods. Our findings improve our understanding of how pore-scale heterogeneity,
inevitable in most porous materials, affects their drying.

1. Introduction

Drying of porous media plays a crucial role in many natural and industrial systems, from soils, to curing of
cement, paints and food [Prat, 2011; Goehring et al., 2015]. Drying in soils is of particular environmental
importance, as it controls the transfer of water and energy between the subsurface and the atmosphere
and affects solute distribution in the root zone [Or et al., 2013]. The rate and extent of fluid transport in gen-
eral, and drying in particular, intimately depend on the heterogenous distribution of grain and pore sizes
and their connectivity, among other factors [Bultreys et al., 2016; Holtzman, 2016]. Pore-size heterogeneity,
either random (disordered) or spatially-correlated in the form of patches or layers of finer or coarser par-
ticles, is an inherent property of natural porous media such as soils or sediments [Knackstedt et al., 2001],
resulting from deposition and diagenetic processes. Even in engineered systems such as micromodels, het-
erogeneity is inevitable due to manufacturing errors.

In this paper, we investigate how spatial correlation in particle sizes affects isothermal drying of porous
media, where evaporation is driven by vapor concentration differences between the medium and the out-
side atmosphere. Evaporation reduces the liquid pressure, allowing air to invade into the pores once the
capillary entry thresholds are exceeded, forming an interface separating liquid- and air-filled pores
[Lehmann et al., 2008; Shokri et al., 2010]. The drying process is typically divided into two main stages. Dur-
ing stage 1 (also called the ‘‘constant rate period’’), evaporation occurs mostly from wet patches at the
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medium’s surface, while liquid is supplied by continuous pathways from the medium’s interior. Stage 1 is
characterized by a drying rate which remains fairly constant despite the decline in surface wetness; this is
attributed to vapor transport in an air boundary layer that develops outside the medium [Yiotis et al., 2007;
Lehmann et al., 2008; Shokri et al., 2010; Shahraeeni et al., 2012]. Stage 2 (or the ‘‘falling-rate period’’) is
marked by a disruption of the liquid pathways to the surface, forcing the surface pores to dry out and the
evaporation to occur further away from the surface. Consequently, the rate, which becomes limited by
vapor diffusion within the porous medium, drops continuously [Lehmann et al., 2008; Shokri et al., 2010;
Goehring et al., 2015]. Liquid connectivity to the surface can be further enhanced by liquid films, in systems
such as throat networks with channels of noncircular cross section or with rough walls, and granular media
[Laurindo and Prat, 1998; Eijkel et al., 2005; Yiotis et al., 2012, 2015].

Previous studies have shown that when a sharp contrast in pore sizes exists (in the form of a coarser and a
finer region), the coarser region dries up completely before finer pores starts to dry. This has been demon-
strated experimentally for a variety of media of different length scales, including sands [Lehmann and Or,
2009; Nachshon et al., 2011; Assouline et al., 2014], micromodels [Pillai et al., 2009] and colloidal drops [Xu
et al., 2008]. Theoretically it has been shown that increasing the width of the pore-size distribution prolongs
stage 1 by maintaining liquid connectivity for longer periods [Metzger and Tsotsas, 2005; Lehmann et al.,
2008]. We note that this observation is true only when gravitational or viscous forces are sufficiently large,
e.g., in a sufficiently deep sample. Nonetheless, a systematic study of how the correlation length of grain or
particle sizes (defined as the characteristic length scale over which particles of similar sizes are expected)
affects drying is lacking.

For the more general problem of immiscible fluid-fluid displacement, it has been shown that increasing cor-
relation length decreases the residual saturation of the wetting phase at breakthrough [Ioannidis et al.,
1993; Knackstedt et al., 2001], leads to a more gradually-varying capillary pressure-saturation relation
[Rajaram et al., 1997; Mani and Mohanty, 1999], and improves connectivity and hence relative permeability
of both phases [Mani and Mohanty, 1999]. Changes in fluid retention were also observed upon varying the
correlation length of particle wettability in a bead pack [Murison et al., 2014].

Here, we present a systematic investigation of the impact of spatial correlations in particle size on the dry-
ing rate and patterns in porous media. We use pore network modeling complemented with microfluidic
experiments to obtain a rigorous quantitative analysis and improve our understanding of the underlying
mechanisms. We show that increasing the correlation length promotes preferential invasion, hence preserv-
ing liquid connectivity and surface wetness, delaying the transition between the drying stages.

2. Methods

One of the main challenges in studying fluid displacement processes such as drying is their large sensitivity
to pore-scale details [Bultreys et al., 2016]. This sensitivity typically requires multiple realizations for each set
of conditions in order to obtain a statistically-representative description [Mani and Mohanty, 1999]. Here, we
formulate a minimal model which describes the essential pore-scale physics of this process—including
evaporation from interfaces, vapor diffusion, and capillary invasion—via a set of simple rules for interactions
between pores. We use this model in computer simulations to generate a sufficiently-large data set to over-
come this sensitivity. We further validate our model using microfluidic devices with state of the art
manufacturing and measurement resolution.

As we seek fundamental understanding of the underlying mechanisms of drying in heterogeneous porous
media, rather than an accurate quantitative description of specific materials, we choose a simplified analog
of a disordered porous medium as our model system. In particular, we use an array of cylindrical solid pillars
(our particles) placed on a regular square lattice, where heterogeneity is achieved by varying the pillar radii
(Figure 1). We note that both our experimental and numerical methodologies allow use of other designs,
such as a triangular lattice or a random close packing. We consider here a horizontal sample, to avoid gravi-
tational effects. We also do not model liquid films, since for our pore geometry–unlike systems such as net-
works of channels or granular media–such films are not expected to be well-connected (further discussion
and supporting evidence are provided in section 4.1.1). The sample is open to the atmosphere at one of its
faces, from which vapor diffuses outside and air invades into the medium (Figure 1a). Our model is
described below, together with a brief description of our microfluidic experiments. Further details of our
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experiments and a discussion of the ability of such a minimal model to capture the experimental behavior
appear in a companion paper, [Fantinel, 2017; see also https://arxiv.org/abs/1612.01897].

2.1. Pore Network Model
We develop a pore-network model of a drying porous medium, discretizing the pore space into individual
pores (the space between four neighboring pillars) connected by throats (the constrictions between two
adjacent pillars; Figure 1b). Drying has been simulated using pore network models for more than two deca-
des [Nowicki et al., 1992; Prat, 1993; Tsimpanogiannis et al., 1999]; for a review see e.g., Prat [2002, 2011]. We
extend our pore-network to include vapor diffusion in the air boundary layer above the medium’s open sur-
face, by discretizing this region into interconnected ‘‘cells’’ as in Laurindo and Prat [1998]. This layer repre-
sents the atmospheric demand of vapor, which sets the potential rate of evaporation from the porous
media. We capture the two-dimensional (2-D) distribution of vapor concentration which develops in the
boundary layer as the surface dries [Suzuki and Maeda, 1968; Yiotis et al., 2007; Shahraeeni et al., 2012] (for
further details see supporting information).

The evaporation rate is computed from the rate of vapor diffusion away from air-liquid interfaces. Vapor
concentration and fluxes are resolved in the entire domain—air-filled pores as well as boundary layer
cells—from the conservation of mass of vapor. A further simplification is provided by the much longer time-
scale of vapor diffusion, relative to the timescales of interface advancement and filling of a newly invaded
pore with vapor. Based on the separation of these timescales, we can represent the dynamics of the air-
liquid interface as a sequence of steady-state configurations, excluding the transient evolution of vapor con-
centration following interface advancement from our model. With this, vapor concentrations are obtained
by enforcing the continuity equation in each pore (or boundary layer cell) i,X

j

JijAij50 (1)

where the summation is done over all neighboring pores (or cells) j. Here

Jij52qsat
v Dr/jij (2)

is the vapor mass flux between two adjacent pores i and j, driven by the local gradient of relative vapor con-
centration, r/jij5ð/j2/iÞ=lij , where /5qv=q

sat
v is the local vapor density qv normalized by the saturated

vapor density qsat
v , and D is the binary diffusion coefficient of vapor in air. Throat ij, connecting pores i and j,

has an effective cross-sectional area of Aij5awij h, where wij5a2RI2RJ (RI and RJ are the radii of pillar of that
throat, i.e., for boundary layer cells wij5a) is its aperture and h is the pillar height (the out-of-plane sample
thickness). The coefficient a accounts for the variable pore width (varying between w at the throat and a at
the pore’s center); a value of a51:6 was determined for our pore geometry by finite-element simulations at
the subpore scale. In the boundary layer, the effective aperture corresponds to the full width of the cell, i.e.,

Figure 1. (a) Schematics of our model of isothermal drying of a horizontal porous sample open to the atmosphere at one of its faces. Low vapor concentration (/5/ext) at the edge of a
diffusive boundary layer (of thickness dBL) that develops outside the medium drives evaporation and vapor diffusion away from air-liquid interfaces (where /5/sat). Evaporation reduces
liquid pressure, causing air to invade into liquid-filled pores. Some of the liquid disconnects from the bulk (i.e., the main cluster) and becomes isolated. The drying front, namely the lead-
ing part of the air-liquid interface (excluding isolated clusters), is marked in red. (b) We model evaporation, vapor diffusion and capillary invasion via a pore network model. Pores are
defined as the space (delimited by a red line) between solid pillars (constant height h and variable radius R) placed on a square lattice (spacing a), and are interconnected by throats
(aperture w). (c) Drying experiments are performed in a horizontal microfluidic cell, initially filled with a volatile liquid via inlet channels. A boundary layer forms within an open region
(pillar-free) of thickness dBL. (d) Close-up image showing the solid cylindrical pillars (top view).
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a 5 1. The distance lij is taken to be the lattice spacing a if both pores are air-filled, and in boundary layer
cells. For an air-filled pore i along the air-liquid interface, we set /j5/sat51 as a boundary condition for the
diffusion problem, where Jij represents the local evaporation rate from interface ij, with lij5a=2. Other
boundary conditions are fixed concentration, /5/ext50, at the external edge of the diffusive boundary
layer, and no-flux (J 5 0) conditions at all cell faces not open to the atmosphere. This provides a set of cou-
pled linear equations in terms of / in each pore and boundary layer cell.

Invasion of air into liquid-filled pores depends on the local capillary pressure, or equivalently, the meniscus
curvature (where the two are related via the Young-Laplace law). We relate the change in curvature to
changes in liquid volume by approximating each throat as a cylindrical capillary tube with an effective
radius of r�ij 5 1=h11=wij

� �21
, with a spherical meniscus of curvature C, such that invasion would occur once

the critical curvature for throat ij, C�ij 52=r�ij , has been exceeded, C � C�ij . This approximation of C�ij is �5%
higher than that calculated from the Mayer-Stowe and Princen method [Lago and Araujo, 2001, equation
(55)], a minor difference that should not appreciably affect our results. Consequently, the curvature of a
meniscus C is linked to the liquid volume evaporated from it, DVij , by

DVij5
pð2=CÞ3

3
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 C=C�ij
� �2

r !2

21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 C=C�ij
� �2

r !
(3)

where DVij is the total volume decrement relative to a flat meniscus (where C 5 0), which is equal to the
sum of the incremental changes in the volume of meniscus ij prior to the current time. The incremental vol-
ume change for a time step Dt is DtJij Aij=ql , where ql is the liquid density. The volume of a pore is

a22p
P

I RI=4
� �

h, where I is the index of the four pillars enclosing it (Figure 1b). Further details of the deriva-
tion of equation (3) appear in Appendix A.

To resolve the curvatures of all menisci from the evaporated volume, we use the following closure relations:
(1) the total liquid volume decrement from any cluster equals the sum of volumes decreased from all
menisci ij in that cluster, DVtot5

P
ij DVij ; and (2) this deficit is divided between the cluster’s menisci such

that their curvature C remains uniform (for all throats). The latter is justified by the much faster pressure dif-
fusion in liquid than vapor diffusion in air, allowing us to consider instantaneous liquid pressure equilibra-
tion. Once a pore is invaded, the liquid volume associated with it is redistributed to other interfacial pores
in that cluster, decreasing the cluster’s curvature C according to equation (3). Since C is uniform, every
meniscus can receive a different volume (according to the corresponding throat radius, r�ij ). We restrict the
volume of liquid that can be redistributed by enforcing C � 0; we consider a pore completely dry and
advance the interface only once all of its liquid is either redistributed, or, if limited by C � 0, evaporated.

Simulations begin with a liquid-saturated sample. Our computational algorithm is as follows: (i) The evapo-
ration rates from the air-liquid interfaces, for a given interface configuration (invasion pattern), are com-
puted from equations (1) and (2); (ii) The time-step until the next invasion event is calculated. This is the
time required to reach the minimal evaporated volume (DVtot) corresponding to a meniscus curvature suffi-
cient to invade a throat, determined via equation (3); (iii) The interface configuration is updated once the
invaded pore empties completely (instantaneously, unless redistribution is restricted). The process is then
repeated by returning to step (i), until we reach breakthrough or a desired saturation.

2.2. Generating Correlated Geometries
For both experiments and simulations we generate samples in which the solid pillar sizes are locally corre-
lated, that is where small pillars are more likely to be found next to other small pillars, and vice versa. The
samples are generated according to the following protocol: we construct a random Gaussian surface with a
prescribed spatial correlation length f (measured in units of the lattice spacing a). We then sample this sur-
face on the grid of pillars, and use these values to determine the pillar sizes.

In particular, the random rough surface H(x, y) is generated by noting that its Fourier transform should be a
Gaussian distribution of intensities, centered around zero, with random phases. This Gaussian distribution is
prepared by summing a thousand sine waves, whose amplitude, phase, and orientation were selected from
a random uniform distribution, and whose wave numbers were drawn from a normal distribution. The
width of this distribution, in Fourier space, is inversely proportional to the correlation length f of the surface.
For a review of methods to generate rough surfaces see Persson et al. [2005]. We then transform this from a

Water Resources Research 10.1002/2016WR020260

BORGMAN ET AL. DRYING CORRELATED POROUS MEDIA 5648



normal to a uniform distribution by mapping the cumulative distribution function of the random rough sur-
face onto the range Hðx; yÞ 2 ½2k;1k� where k is a measure of the heterogeneity in pillar sizes. Finally, the
radius RI of each pillar is chosen as �Rð11HIÞ, where HI5HðxI; yIÞ is the height of the surface at the center of
that pillar (coordinates xI, yI). An overbar denotes an arithmetic average throughout the text.

The following parameter values were used in both simulations and experiments: sample size of 100 3 100
pillars, with �R550 lm, a 5 130 lm, �w530 lm, and h 5 40 lm, providing a mean porosity of 0.53. For the
completely uncorrelated samples (f 5 0), slightly different values of a 5 125 lm and �w525 lm were used
(porosity of 0.5). We generated two sets of data for this paper: (i) a large set for statistical analysis (simula-
tions only); and (ii) a smaller set for comparison between simulations and experiments. Statistics, including
ensemble averages and deviations, were obtained from a set of 40 realizations (namely samples with differ-
ent random seeds) for each f, with f values of 0, 1, 1.5, 2, 2.5, 3, 4, 6, 10, and 15 (a total of 400 simulations),
k50:1, and dBL 5 2 mm. Comparison of simulations and experiments was performed in samples with identi-
cal pore geometry, using 8 correlated samples (f values of 1, 4, 10, and 15, normally-distributed sizes with k
values of 0.1 and 0.2) and 8 uncorrelated samples (f50, and k values of 0.03, 0.05, 0.1 and 0.2). Due to the
formation of sample-spanning patches for f 5 15, potentially introducing sample-scale effects, we do not
include these simulations in the quantitative analysis along with other f values. For completeness, compari-
son between experimental and simulated patterns for all f values, including f 5 15, is provided in the sup-
porting information.

2.3. Microfluidic Experiments
Micromodels made of an array of cylindrical pillars in between two planar plates are manufactured using
standard microfluidic (aka ‘‘lab-on-a-chip’’) techniques including soft lithography. For further details see Fan-
tinel [2017]. Briefly, a silicon wafer is spin-coated with a negative photoresist (SU8 3025, MicroChem Corp.),
which is then exposed to UV light through a mask to produce the desired design (pillar positions and sizes).
After rinsing, the remaining SU8 structure is used as a primer for a secondary mold of polydimethilsyloxane
(PDMS). The PDMS is then cured and is used as a mold for the final sample, made of Norland Optical Adhe-
sive 81 (NOA, Sigma-Aldrich). The NOA sample is then cured and exposed to white light to stabilize its opti-
cal properties. Our manufacturing procedure resolution is �2 lm, with an estimated uncertainty in pillar
sizes of �1.6 lm (�3.2% of design). The potential impact of such uncertainty is discussed in section 4.1.2.

A boundary layer is included in the experimental design by leaving the region adjacent to the open side
empty of solid pillars (Figure 1c). Uncertainty introduced by variations in the experimental layer width dBL

(2 6 1 mm), and possibly its extension into the air immediately outside of the open edge of our cell, lead to
a range of initial rates for similar experimental layer width dBL. Thus, to compare rates we use in the simula-
tions an effective value for dBL, computed by matching the initial experimental rates, as in Vorhauer et al.
[2015]. A sensitivity analysis showing how uncertainty in dBL, impacts drying appears in [Fantinel, 2017; see
also https://arxiv.org/abs/1612.01897].

The sample is initially filled with a fluorinated oil Novec 7500 [3M, 3M Electronics Materials Solutions Division,
St. Paul, MN, 2016] through inlet channels (Figure 1c). At the experimental temperature (2561

�
C), the fluid

properties are: vapor pressure of 2.1�103 Pa, qsat
v 5 0.35 kg/m3, interfacial tension of c 5 0.0162 N/m [3M, 2016],

and D55 � 1026 m2/s [United States Environmental Protection Agency, USEPA Ecosystems Research, Athens, GA,
2016]. The cell, placed horizontally to avoid gravitational effects, is left to dry under a digital SLR camera (Nikon
D5100) with a macro lens. Illumination is provided by a ring of LEDs surrounding the cell. Time-lapse images
are taken every minute, with a spatial pixel resolution of 5 lm, equivalent to a liquid mass on the order of 1
nanogram (providing here a more accurate method for monitoring drying progression over weighting). Experi-
ments are stopped at breakthrough, since past breakthrough air can invade the inlet channels.

Our image analysis procedure is briefly described below (for further details, see Fantinel [2017]). First, the
red color channel of the image, which contains the best contrast, is extracted. Then, a bandpass filter is
applied to remove both the high-frequency noise and any low frequency variations in intensity. Subtraction
of the first image from each image sequence removes constant sources of background noise. Thresholding
then provides a binary image with wet (white) and dry (black) areas. Finally, we remove the solid pillars to
obtain a continuous distribution of liquid and air. Drying rates are computed from the difference in the dry
area between consecutive time-lapse images. To reduce the noise introduced by such operation, the result-
ing rates are filtered with a low-pass filter with a cutoff of 0.1 (i.e., smoothing over 10 images), and further
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averaged with a 5-point moving average. To compare with simulations we also generate a discrete data set
of the invasion time for each pore by identifying the locations of the pores and their occupancy throughout
the time-lapse sequence of images.

3. Results

3.1. Comparing Model With Experiments
3.1.1. Drying Patterns
Our simulated drying patterns agree well with the corresponding patterns in microfluidic experiments using
identical pore geometries (Figure 2a; additional patterns are provided as supporting information). The
match between a pair of patterns is defined here as the number of overlapping invaded pores (common to
both patterns) divided by the average number of invaded pores, at breakthrough (see Appendix B). Com-
parison of all our experimental patterns versus the respective simulations (namely pairs of similar pore
geometry) provides an average match of 59%, with a standard deviation of 19% from that mean. Other met-
rics, including the front roughness and the main cluster saturation, are also in agreement [Fantinel, 2017].
An exception is the Euler number—the invading phase connectivity computed as the number of clusters of
air-filled pores minus the number of liquid clusters (‘‘islands’’) within them–which does not (in some cases
the experimental values reach 2200 whereas simulations do not exceed 270 [Fantinel, 2017]). This disparity
is due to isolated liquid clusters that form and persist for longer periods in the experiments (see videos in
supporting information). Accordingly, when considering the leading front (ignoring small isolated clusters,
as often done to estimate finger width [Toussaint et al., 2012]), the pattern match improves (average of 64%
with a standard deviation of 22%).
3.1.2. Drying Rates
Our simulated drying rates are generally in good agreement with experiments, except for later stages (at
low saturations), where simulations exhibit fewer isolated clusters near the surface. The disappearance of
near-surface isolated clusters forces the drying front to recede deeper into the medium, and the simulated
rate to drop (Figure 2b). Here, e is the evaporative flux, in terms of volume of liquid evaporated per unit
time and area of open surface, and S is the saturation, computed as the ratio between the liquid volume
remaining and the total pore volume. We note that the experimental rates exhibit fluctuations, and at times
a lack of a well-defined constant rate period (Figure 2b, and supporting information Figure S2). Such noise
is a consequence of evaluating the rates from the time-lapse images, and also conceivably changes in the
air circulation in the laboratory.

Figure 2. (a) Simulated and experimental patterns for samples with different correlation length, f, are in good agreement. The main differ-
ence is the persistence of near-surface isolated clusters for longer periods experimentally. Black and white denote pores filled with air and
liquid, respectively (solid not shown); the red line indicates the drying front. The sample size (pore space only) is �1.25 cm. (b) Simulated
drying rates e initially follow the experimental ones, however they show a faster rate drop at lower liquid saturation, S (the ratio between
the liquid volume and the total pore volume). This drop is associated with reduced persistence of isolated clusters in simulations, pushing
the drying front deeper, and thus lowering the drying rate.
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Since vapor saturations and evaporation rates are a consequence of the liquid distribution, disagreement in
patterns would jeopardize the match in rates. To further examine the impact of the drying pattern on rate,
we computed the theoretical rates (using equations (1) and (2)) from the observed experimental patterns,
by solving Laplace’s equation for the pore-by-pore sequence of experimental patterns. These rates match
well the experimental ones (see supporting information Figure S3). This suggests that the disparity in pat-
terns is responsible for that in rates; it also confirms the validity of our evaporation and vapor transport
calculations.

3.2. Impact of Spatial Correlation
3.2.1. Drying Patterns
Our simulations demonstrate that increasing the correlation length f enhances the connectivity of pores of
similar size, and hence the accessibility of larger pores across the sample. This promotes preferential drying
of larger pores while smaller pores remain wet and maintain liquid connectivity to the surface. As a result,
increasing f forces the drying patterns to follow more closely the underlying pore geometry (Figure 3a).
Similarly, the tendency to invade larger pores, quantified here by the fraction of larger-than-average
invaded pores, vL, increases with f (Figure 3b; see Appendix C for the evaluation of vL). Another conse-
quence of preferential drying is that it reaches deeper parts of the medium, leading to an earlier break-
through, as demonstrated by the increase in the invasion depth Z0 with f (Figure 3c). Here Z0 is the depth
of the center of mass of the invaded pores (marked in gray in Figure 3a).
3.2.2. Drying Rates
Maintaining liquid connectivity in more correlated samples preserves surface wetness, which, due to its
strong influence on drying rates, prolongs stage 1 and delays the rate drop marking the onset of stage 2
[Lehmann et al., 2008; Shokri et al., 2010; Shahraeeni et al., 2012]. Our simulations capture the more gradual
decrease in surface wetness, as demonstrated here via a slower drop in surface saturation Ssurf (the liquid
saturation for the row of pores closest to the boundary layer) with overall liquid saturation S in samples
with longer correlations f (Figure 4a). This results in faster drying, as shown by: (i) maintenance of higher

Figure 3. (a) Our simulations show that increasing correlation length f (in units of lattice spacing a), promotes preferential drying of connected large pores, such that the drying pattern
follows more closely the underlying sample geometry. Patterns at different liquid saturation, S, are shown next to the pore size distribution (in terms of volume, normalized by the mean;
purple indicates large pores). The tendency for preferential drying, quantified here through (b) the fraction of larger-than-average invaded pores, vL, and (c) the mean invasion depth, Z0

(marked by a gray line on a few patterns in panel a), increases with f. Symbols and bars in Figures 3b and 3c represent ensemble average and standard error from 40 realizations, for
S50.5 and S50.8.
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rates ~e for longer duration (lower S, Figure 4b); and (ii) faster decline of S with time ~t (Figure 4c). We use the
following nondimensional rate and time: ~e5e=e0 where e05ðqsat

v =qlÞD/sat=dBL is the potential drying rate,
and ~t5t=t0 where t05nL=e0 is the characteristic time to evaporate liquid from a sample of depth L and
porosity n. The enhancement of the drying rate by increasing f is further quantified through the larger rate
at S550%; ~e50, and shorter time to reach S550%; ~t 50 (Figure 4d).

4. Discussion

4.1. Predictive Model Capabilities: Simulations Versus Experiments
Our simulated patterns are generally in good agreement with microfluidic experiments using similar pore
geometry, as quantitatively shown through the agreement in pattern match, front roughness and main
cluster saturation [Fantinel, 2017]. The main differences between simulated and experimental patterns are
the reduced formation and persistence of isolated clusters in the simulations, and the earlier rate drop com-
pared to the experiments. We note that the experimental leading front (the pattern excluding isolated clus-
ters) is well captured by our simulations. In fact, our ongoing work shows that the leading front can be
predicted by an invasion percolation (IP) model; however, we use here a more involved model since IP
ignores two aspects which are crucial to the current work: (i) drying of trapped clusters and (ii) dynamics
(e.g., IP, being quasi-static, ignores time which is required to determine rates). Potential sources for the
aforementioned discrepancies include liquid films, wettability effects, and uncertainty in pore geometry;
their impact is discussed below.
4.1.1. Liquid Films and Wettability Effects
Liquid films can provide a source of liquid for isolated clusters close to the open surface, thus delaying inva-
sion into these clusters and maintaining higher drying rates at lower saturations. In systems such as etched
(channel) networks or granular media, such films can persist in channel corners, rough surfaces, and inter-
stices between neighboring particles [Laurindo and Prat, 1998; Prat, 2011; Yiotis et al., 2012]. For our pore
geometry, the liquid capillary rings around solid pillars that remain after a pore is invaded are not expected
to be well-connected, with little effect on liquid connectivity. This hypothesis is supported by optical micro-
scope images from our microfluidic experiments, showing different meniscus curvatures and hence capil-
lary pressures in adjacent isolated liquid clusters.

Figure 4. Increasing correlation length f maintains liquid connectivity to the surface, (a) prolonging higher surface wetness, Ssurf , and (b) faster
drying rates, ~e , for longer duration, such that (c) the saturation S drops faster with time ~t . (d) Quantitatively, increasing f increases the rate at
S 5 50%, ~e50 and decreases the time to reach S 5 50%, ~t 50. For each f we plot the ensemble average (lines in Figures a–c; symbols in Figure
4d where colors highlight f of 1, 4, and 10.) and standard error (shading in Figures 4a–4c, error bars in Figure 4d) from 40 realizations.
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In our experiments, however, films at the corners of the cell’s edges may enhance connectivity between the
main liquid reservoir and the open surface, hence promoting evaporation from depth on the expense of
isolated clusters closer to the surface. To evaluate the potential effect of this mechanism, we simulate a sce-
nario in which these films extend throughout the entire cell (including the part without solid pillars, i.e., the
boundary layer), and during the entire experiment. This is crudely represented by enforcing wet pores along
the two cell edges (numerically, fixing a value of /51 in all pores and boundary layer cells along these
edges) throughout the simulation. In these simulations, persistence of isolated clusters close to the open
side and faster drying rates are maintained for longer periods (compared to simulations without corner
films; Figure 5). These simulations also exhibit a more distinctive constant rate period, which could be
explained by the presence of liquid films at the cell’s corners. We stress that these simulations overestimate
the effect of such films (regardless of the details of their geometry), since they are expected to shrink and
recede deeper into the cell during the experiment; indeed, both the isolated clusters and the high initial
rates in these simulations persist longer than in the experiments (Figure 5).

The reduced formation of isolated clusters could also be attributed to wettability effects. To examine the
impact of wettability, we compare our experiments with highly-wetting oil (contact angle of �3

�
[3M,

2016]) with one using water (�70
�

[Silvestrini et al., 2012]). The two experiments mainly differ by the number
of isolated clusters formed, suggesting that wettability effects, which are not included in our model, could
decrease the agreement between our simulations and experiments [Fantinel 2017; see also https://arxiv.
org/abs/1612.01897].
4.1.2. Uncertainty in Pore Geometry
An inevitable source of disparity in patterns, and consequently in rates, is manufacturing errors (referred to
here as ‘‘noise’’) introducing uncertainty in pore geometry. Our state-of-the-art manufacturing procedure
provides small random errors in pillar radius, of �1.6 lm, corresponding to �3.2% of the mean. The emer-
gent patterns—in drying, and, in general, immiscible displacement—are highly sensitive to small geometri-
cal details; that is, slight changes in pore sizes, even locally, can significantly alter the pattern [Bultreys et al.,
2016]. An extreme example of this sensitivity is the ‘‘binary choice’’ that can occur when the invasion front
reaches a bottleneck in the form of a narrow throat; if slightly altered, the invasion may proceed elsewhere,
bypassing an entire region. Such a case is presented in the supporting information (supporting information
Figure S2, k50:2, f 5 15), showing distinctively different patterns in experimental samples made from the
same mold (identical design).

Figure 5. We evaluate the potential impact of liquid films in the corners at the cell’s outer edges by simulating films which extend throughout
the entire cell including the boundary layer, and during the entire experiment. Introducing these films prolongs the persistence of (a) isolated
clusters close to the open side and (b) faster drying rates; bottom row in Figure 5a shows simulated patterns without films (from Figure 2).
Black and white denote pores filled with air and liquid, respectively (solid not shown); red line indicates the drying front.
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To quantify the sensitivity of the drying pattern to perturbations in pore geometry, we introduce, numeri-
cally, random noise in pillar sizes. Simulations with different noise values (applied to 10 different samples)
show that the pattern match at breakthrough drops to �65% when the error reaches 3% (Figure 6a). The
fact that we obtain a comparable match between simulations and experiments indicates that our model

predicts patterns very well within the
experimental uncertainty in pillar sizes
(�3.2%, cf. Figure 6a). To exemplify the
impact of uncertainty in geometry, we
show how increasing the noise intro-
duced to a specific sample design (Figure
6b) from 1% to 3% reduces the pattern
match at breakthrough from 77% to 65%
(Figures 6c and 6d, respectively).

4.2. Impact of Correlation Length
4.2.1. Pressure Evolution
The tendency to preferentially invade large
pores, which increases with correlation
length, also affects the evolution of the
liquid pressure. Each time the invasion
front reaches a narrower throat, a further
decrease in liquid pressure (by evapora-
tion) is required to overcome the large
capillary threshold. In a medium with non-
correlated heterogeneity, the frequency of
such events is high; in contrast, the inter-
connectivity of pores of similar sizes at
high f reduces the frequency of such
events, as exceeding a threshold enables
invasion of multiple pores. Indeed, in sam-
ples with lower f we observe a sharper

Figure 6. To evaluate the impact of geometrical uncertainty, we introduce random noise in pillar sizes in the simulations, mimicking
manufacturing errors. Significant changes to the emergent drying patterns demonstrate their sensitivity to small geometrical details.
(a) Our simulations show a reduction in pattern match from �85% to �65% (at breakthrough) as the noise increases from 0.25% to 1.5%
(in black, symbols and bars are ensemble averages and standard errors from 10 samples with f 5 0). Given the experimental uncertainty in
pillar sizes (�3.2%), our simulated patterns agree very well with the experiments (in red, for f 5 0). The sensitivity to details is exemplified
by the alteration of the drying pattern of a particular sample (b) caused by introducing an error of 1% (c) and 3% (d), reducing the match
from 77% to 65%, respectively.

Figure 7. In more correlated media (higher f), improved connectivity and
preferential drying of large pores results in a more gradual change in the criti-
cal (minimum) invasion pressure, pmin, as drying proceeds (with decreasing
saturation, S). That is, a large number of pores can be invaded without a sig-
nificant increase in capillary pressure (decrease in liquid pressure). Here pmin is
an extreme value of the minimal pressure recorded among all liquid-filled
pores during an invasion event, pinv, since the beginning of the simulation. An
example of how pmin is computed is provided in the inset, showing the mini-
mal liquid pressures pinv for a series of 16 invasion events from a specific sim-
ulation: new (record-low) minima are marked by red stars, other events (local
minima) by black dots. The main panel shows values of pmin versus saturation
from 40 realizations (lines and shading are ensemble average and standard
error).

Water Resources Research 10.1002/2016WR020260

BORGMAN ET AL. DRYING CORRELATED POROUS MEDIA 5654



drop in the minimum pressure pmin with
saturation S (Figure 7); that is, the capillary
pressure required for the front to advance
becomes larger as drying proceeds and S
decreases, in accordance with observa-
tions from drainage simulations [Rajaram
et al., 1997]. Here pmin is an extreme mini-
mal liquid pressure recorded since the
beginning of the simulations, namely a
record-low value of the minimal liquid
pressure during an invasion event pinv (see
example in inset of Figure 7), normalized
by a characteristic invasion pressure
p�52cð�w 211h21Þ.
4.2.2. Transition Between Drying
Stages
Maintaining surface wetness through liq-
uid connectivity to the open surface con-
trols the transition between the different
drying stages, that is between dominance
of evaporation from the open surface,
and from deeper parts of the medium’s
interior [Lehmann et al., 2008]. Our pore-

scale model allows us to quantify the relative strength of these mechanisms. We show that increasing spa-
tial correlation delays this transition (Figure 8), defined here as the saturation at which the evaporation rate
from the surface equals that from interior pores, Seq (Figure 8, inset). We note that this analysis considers
connectivity of liquid-filled pores only; this transition can be further delayed by enhanced connectivity of
liquid to the open surface due to film flow along channel corners [Laurindo and Prat, 1998; Chauvet et al.,
2009] or intergranular contacts in particulate matter [Shokri et al., 2010; Yiotis et al., 2012]. Such a delay can
be made evident in our simulations by evaluating the impact of films at the cell’s outer edges (Figure 5).
The ability to predict the point of transition between drying mechanisms could be exploited in practice; for
instance, one could manipulate a material’s microstructure to control the duration of stage 1 drying [Assou-
line et al., 2014].

5. Conclusions

We study the impact of spatially-correlated pore geometry on isothermal drying of porous media. We pre-
sent a minimal pore-scale model, describing evaporation, vapor diffusion, and capillary invasion by a set of
simple rules for the interactions between pores. We compare our numerical simulations to state-of-the-art
microfluidic experiments of similar pore geometry. Our simulated patterns compare favorably with the
experiments, in light of the large sensitivity of the emergent patterns to uncertainty in pore geometry. We
note the reduced formation and persistence of isolated clusters in simulations, leading to a faster drop in
the evaporation rate than observed experimentally. Potential explanations for this discrepancy include film
flow along corners at the sides of the cell, and wettability effects.

We find that increasing the correlation length promotes preferential invasion of large pores, which pre-
serves liquid connectivity and surface wetness, maintaining higher drying rates for longer periods. We
explain this behavior by quantifying the point of transition between dominant mechanisms (drying stages):
from evaporation mostly at the surface, where rates are controlled by diffusion through the boundary layer,
to evaporation from depth at a rate limited by the much slower vapor diffusion inside the porous medium.

Our approach of coupling a minimal pore-scale model with microfluidic experiments as a simple porous
media analog could also be applied to study the effects of pore-scale heterogeneity in a wide range of
problems including immiscible fluid-fluid displacement [Holtzman, 2016] and solute transport [Kang et al.,
2015]. Specifically, our findings improve our understanding of how pore-scale heterogeneity, inevitable in
most porous materials, affects their drying rate and extent. These findings bear significant implications for

Figure 8. The transition between the drying stages is delayed (i.e., it occurs at
smaller liquid saturations) as the correlation length f increases. The transition
is defined here as the saturation at which the evaporation rate from surface
pores equals that from internal pores, Seq. Diamonds and bars are ensemble
average and standard error from 40 realizations. The inset shows the breakup
of evaporation rates for a sample with f 5 1; the crossing of the red and blue
lines provides Seq.
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multiple industrial and natural processes, ranging from fuel cells [Prat, 2011], cements and paints [Goehring
et al., 2015] to soil-atmosphere energy and moisture exchange and soil salinization [Nachshon et al., 2011;
Norouzi Rad et al., 2013; Or et al., 2013].

Appendix A: Derivation of Liquid Volume-Meniscus Curvature Relation
(Equation (3))

Our pore-scale model includes capillary invasion of air, once the critical entry threshold has been exceeded.
At each time step, we update the capillary pressures (or equivalently, the meniscus curvature C, where the
two are related via the Young-Laplace law) in each pore throat ij according to the amount of liquid evapo-
rated during that step, DVij . To relate the change in curvature to changes in liquid volume, we approximate
each throat as a cylindrical capillary tube with a radius of r�ij 5 1=h11=wij

� �21
(Figure C1), where wij is the

throat aperture and h is the pillar height (out of plane sample thickness). This allows consideration of a
spherical meniscus of curvature C, and predict the onset of capillary invasion once the critical curvature for
throat ij, C�ij 52=r�ij , has been exceeded, C � C�ij .

With the above, the volume evaporated from the meniscus DVij (measured since the initial condition of zero
curvature, C 5 0) is related to its current curvature C52=R through the spherical cap equation,
DVij5pb2ð3R2bÞ=3. Here R is the sphere radius, b5Rð12sin aÞ is the cap height and a5cos 21 r�ij =R

� �
(Figure

Figure C1). Replacing the radii r�ij and R with the equivalent curvatures and rearranging leads to equation (3).

Appendix B: Evaluating the Pattern Match

The pattern match D5Ncom=Navg between a pair of patterns is defined here as the number of overlapping
invaded pores Ncom (namely, the invaded volume common to both patterns, measured in number of pores)

Figure A1. Schematics of our model relating the air-liquid meniscus curvature to the amount of liquid evaporated. A throat ij is repre-
sented as a cylindrical capillary tube with an effective radius of r�ij , with a spherical meniscus (red line) of curvature C 5 2=R where R is its
radius. The volume evaporated since initial condition of zero curvature (C 5 0), DVij , is the volume of the spherical cap (gray shading).

Figure B1. Calculation of the pattern match between an experiment and a simulation (same pore geometry) for the sample with f54 and
k50.2. The match is calculated at breakthrough, for two pairs of patterns (shown as insets): (i) original patterns (left) and (ii) considering
the leading front only (patterns modified by excluding the isolated liquid clusters, right). Images in the larger panels show invaded pores
common to both patterns (in red), and pores invaded exclusively in the experiments (green) and in the simulations (blue). For each pair of
patterns, the match is computed from the number of common invaded pores (red), divided by the average number of invaded pores in
both patterns–the experimental (red1green), and the simulated (red1blue).
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divided by the average number of invaded pores in both patterns, Navg5ðN11N2Þ=2. Here N1 and N2 is the
number of invaded pores in each pattern. The match is evaluated at breakthrough of both runs, 1 and 2. In
addition to the match between the original pair of patterns, we also compute the match considering the
leading front (accounting for the main cluster only, excluding the isolated clusters).

An example of the evaluation of the match between an experiment and a simulation is provided in Figure
Figure A1. For two pairs of patterns (in insets)–(i) the original pair (left) and (ii) the leading front (right), the
invaded area common to both patterns appears in red, and the area invaded exclusively in the experiments
and in the simulations appears in green and blue, respectively. The number of invaded pores for the original
pair (left) is as follows: 4002 pores in the experiment, 5326 in the simulation, with 3859 overlapping, provid-
ing a match of 83%. Considering only the leading drying front (right) improves the match to 97%.

Appendix C: Computing the Fraction of Larger-Than-Average Invaded Pores

The fraction of larger-than-average invaded pores, vL (cf. Figure 3b), is defined as the number of invaded
pores which are larger (by volume) than average (marked in orange in Figure B1), divided by the total num-
ber of invaded pores (orange1green). Figure B1 exemplifies this calculation for the two samples and two
saturation values shown in Figure 3b: (i) for f 5 1, vL562% (for S50.8) and 56% (S50.5); and (ii) for f 5 10,
vL593% (S50.8) and 84% (S50.5). The increase in vL with f demonstrates the increasing tendency to pref-
erentially invade larger pores.
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